Difference between revisions of "Matematika datorikiem"
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Kas jāzina datoriķim no matemātikas un teorijas. |
Kas jāzina datoriķim no matemātikas un teorijas. |
||
Šis nebūt nav izsmeļošs saraksts, |
Šis nebūt nav izsmeļošs saraksts, un nav arī sakārtots, |
||
bet tēmas un atslēgvārdi, ar ko nācies vairākkārt praktiski saskarties. |
|||
* Markov model |
* Markov model |
||
Line 8: | Line 9: | ||
* PCA - principal component analysis |
* PCA - principal component analysis |
||
* Kalman filter |
* Kalman filter |
||
* Particle filter |
|||
* Fourier transformation ([http://en.wikipedia.org/wiki/Fourier_transform wikipedia]) |
* Fourier transformation ([http://en.wikipedia.org/wiki/Fourier_transform wikipedia], [http://www.youtube.com/watch?v=BjBb5IlrNsQ Video lekcija no Stanford U.], [http://www.dspguide.com/ch8.htm DSPGuide par DFT]) |
||
* Standard deviation |
* Standard deviation |
||
* Expected value |
* Expected value |
||
Line 14: | Line 16: | ||
* Correlation |
* Correlation |
||
* Point spread function |
* Point spread function |
||
* Information entropy |
|||
* Shannon's theorem (Noisy-channel coding theorem) - ([http://en.wikipedia.org/wiki/Noisy-channel_coding_theorem Wikipedia]) |
|||
* Nyquist rate - ([http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem Wikipedia]) |
Latest revision as of 00:43, 8 May 2016
Kas jāzina datoriķim no matemātikas un teorijas.
Šis nebūt nav izsmeļošs saraksts, un nav arī sakārtots, bet tēmas un atslēgvārdi, ar ko nācies vairākkārt praktiski saskarties.
- Markov model
- Hidden Markov model
- Markov chains
- PCA - principal component analysis
- Kalman filter
- Particle filter
- Fourier transformation (wikipedia, Video lekcija no Stanford U., DSPGuide par DFT)
- Standard deviation
- Expected value
- Convolution
- Correlation
- Point spread function
- Information entropy
- Shannon's theorem (Noisy-channel coding theorem) - (Wikipedia)
- Nyquist rate - (Wikipedia)