CPS

From DiLab
Revision as of 09:05, 6 September 2013 by Artis (talk | contribs)
Jump to: navigation, search

Tēma: Kiber-fizikālās sistēmas (Cyber-Physical Systems - CPS)

Literatūra

When Bigger Is Not Better: Small, Low-Pin-Count Processors That Can Handle the Job

http://bit.ly/15DCsqT

Abstract - With the ever-continuing push for higher functional integration, complex MCU packages with hundreds of pins are now commonplace. Chipmakers are taking advantage of the high-pin-count parts to fit everything possible either on chip or around the periphery.

But not every microcontroller design needs a lot of I/O. Internal peripherals and resources can still perform rather complex functions and need only a pin or two such as UART, I²C, PWM, or SPI. What’s more, some designs are better suited to small size, low-pin-count parts in small packages that can fit in very tight spaces. These parts may also be inexpensive enough to essentially be “throw away”. In addition, the low power capability of these processors is, as they say in personnel recruitment ads, “a plus.” The difference maker in many cases is that the small, low-pin-count MCU is able to perform functions that otherwise would take several discrete chips and circuit elements to perform.

This article looks at some very small sized microcontrollers (16 pins or less) and the ranges of features and performances at the engineer’s disposal for size-constrained, tight-fitting applications. We will examine some of the available architectures for 8-, 16-, and 32-bit parts, as well as some advanced peripherals and review the capabilities of these processors, which include mixed-signal functionality.